Original Article
Comparative Histopathologic Evaluation of the Effects of *Portulaca oleracea*, Omega-3, and Combination of Sodium Selenite and Vitamin E on Hepatic Enzymes of Experimental Diabetic Rats

Daryoush Babazadeh1, Ali Shabestari Asl2, Alireza Sadeghi3, Muhammad Saeed4, and Arman Moshavery5

1 School of Veterinary Medicine, Shiraz University, Shiraz, Iran
2 Department of Clinical Science, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 Doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
4 Department of Pharmacy, University of Peshawar, 25120, Peshawar, Pakistan
5 Doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran

Corresponding author: Daryoush Babazadeh, School of Veterinary Medicine, Shiraz University, Shiraz, Iran. Email: daryoush.babazadeh@shirazu.ac.ir

Article History:
Received: 23/01/2022
Accepted: 05/03/2022

Article Info

Keywords:
Diabetes
Hepatic enzymes
Omega-3
Portulaca oleracea
Vitamin E

ABSTRACT

Introduction: *Portulaca oleracea* (PO) plant, Omega-3, and Sodium Selenite plus Vitamin E have antidiabetic effects by compensating for the deficiency in insulin release and enhancing antioxidant status. The purpose of the present study was to comparatively assess the effect of *Portulaca oleracea*, omega-3, and a combination of Sodium Selenite and Vitamin E on hepatic enzyme activities in streptozotocin-induced diabetic Rats.

Materials and methods: A total of 48 adult male Wistar rats (weighing approximately 220 ± 10 g) were injected by a single intraperitoneal injection of streptozotocin (60 mg/kg body weight.) and were randomly assigned to 4 groups, and 4 replicates for each group. Group 1 served as diabetic control, groups 2, 3, and 4 received *Portulaca oleracea* extract (1.5 mg/kg/day, orally), Omega-3 (500 mg/kg/day, orally), and Sodium Selenite (0.5 mg/kg/day, orally) plus Vitamin E (400 Iu/kg/day, orally), respectively, for 28 days. At the end of the study, blood samples were taken for biochemical investigations.

Results: The levels of blood glucose, AST, ALP, and GGT enzymes in all treatment groups were less than those of the control group. The ALT enzyme activity in rats treated with *Portulaca oleracea* and Vitamin E plus Selenium was less than in control and omega-3 treatment groups.

Conclusion: Results indicated that *Portulaca oleracea* is more effective in hepatic enzyme activities of diabetic rats, compared to other treatment groups.

1. **Introduction**

Diabetes mellitus is a pathologic condition that causes extensive and non-physiological metabolic imbalance disorders, including an increase in blood glucose, and changes in carbohydrate, lipid, and protein metabolism in different body tissues, such as liver, and pancreas1,2. An increase in blood glucose initiates a series of cascade reactions, which leads to an increase in the production of free radicals (including oxygen free radicals) in various body tissues3,4. The high potency of these compounds for chemical reactions damages cells and tissues. Several reports have been published concerning the involvement of Reactive Oxygen Species (ROS) in tissue damages5 among which the high level of ROS in pancreatic islets and changes in oxidative stress markers in laboratory animals can be noted6. Aerobic cells can be protected against free radicals, particularly ROS, by antioxidants compounds, such as glutathione, Vitamins E and C, as well as super Oxide Dismutase (SOD), glutathione Peroxidase (GPx), and catalase enzymes7,8. On the other hand, studies have also shown a significant decline in both non-enzymatic antioxidants (including rehabilitated glutathione (GSH) and Vitamin E) and enzymatic antioxidants (such as SOD, catalase, and GPx in diabetic rats)9,10. It has also been indicated that free radicals can cause diabetic damages in...
different organs, such as the pancreas and liver, by declining SOD, catalase, and antioxidant activities10,11. Free radicals can also damage the unsaturated fatty acid in cell membranes12. The combination of fatty acids in cell membranes can affect cell membrane-related phenomena, such as the interaction between insulin and its receptors13. In addition, it has been indicated that the fatty acid composition of membrane phospholipids in insulin targets tissues, such as the liver and skeletal muscles, affecting both insulin secretion and its biological activity14. Red blood cells are also susceptible to oxidative damage due to the presence of fatty acid in their membrane and high concentration of oxygen and hemoglobin15. Hence, it is beneficial to use antioxidant compounds (particularly natural antioxidants) and omega-3 fatty acids to prevent oxidative damage.

Vitamin E plus Selenium is one of the important food compounds which not only have high antioxidant biological properties, but it can also affect different biological processes of the body. Shamsi et al.16 have also shown that Vitamin E decreases blood glucose in diabetic rats and reduces diabetic disorders. It has been reported that Vitamin E declines Malondialdehyde (MDA) and increases GSH and SOD in diabetic rats17. Vitamin E prevents lipid peroxidation and protects cells against peroxide radicals; thus, it is the most important antioxidant in the biological membrane, which can neutralize free radicals18. Selenium is the only trace element that enters the genetic code as selenocysteine. This element can be extensively found in selenoproteins, namely the GPx enzyme, through which the Selenium antioxidant effect can be activated19. Reports available on the efficacy of Selenium in diabetes have indicated a decline in the effectiveness of streptozotocin (STZ) and enhancement of positive effects on GPX enzyme activity in laboratory rats20.

\textit{Portulaca oleracea} is a rich source of omega-3 polyunsaturated fatty acids (alpha-linolenic acid), different vitamins (A, C, and E), and minerals which has different pharmacological (such as antioxidant, anticancer, anti-inflammatory, and antimicrobial) properties21. However, bioactive compounds of \textit{Portulaca oleracea} can have beneficial effects against diabetes22. Few studies are addressing the anti-diabetic effects of \textit{Portulaca oleracea} in previous years23,24. Thus, the present study aimed to compare the effect of \textit{Portulaca oleracea}, omega-3, and Sodium Selenite plus Vitamin E on hepatic enzyme activities in streptozotocin-induced diabetic Rats.

2. Materials and Methods

2.1. Ethical approval

All procedures were approved by the Animal Care Committee of Veterinary Medicine, Islamic Azad University, Tabriz Branch, Iran. The principles of laboratory animal care were followed, and specific international laws were observed.

2.2. Animals

A total of 48 male Wistar rats aged 2-3 months, with an average weight of 220 g were bought from Razi institute, Iran, and kept in laboratory conditions with \textit{ad libitum} water and food intake. Experimental animals have been kept in standard cages with a minimum of 50% humidity, 24°C temperature, and 12 hours dark/light cycle with appropriate ventilation in a particular cage. The rats were divided into 4 main groups of 10, and 8 rats randomly remained as a control group. The groups contained the control group of diabetic rats, which received the standard ration daily, the second group of diabetic rats was fed the standard ration plus \textit{Portulaca oleracea} extract (1.5 mg/kg/day) via gastric feeding tube daily. The third group of diabetic rats was fed a standard ration plus omega 3 (500 mg/kg/day) via gastric feeding tube daily, the fourth group of diabetic rats was fed standard plus Vitamin E (400 iu/kg/day) and Selenium (0.5 mg/kg/day) via gastric feeding tube daily.

2.3. Extraction of \textit{Portulaca oleracea}

The aforementioned atmospheric parts of \textit{Portulaca oleracea} were prepared from the farm of Islamic Azad University, Tabriz, Iran, and kept in the dark glass bottle at 10°C temperature away from direct sunlight. Then, 250 g of the intended powder was extracted by ethanol-water solvent (70% ethanol-30% water) three times at normal laboratory temperature based on the method of Abdullah and Kusumaningtyas25. The extracts were mixed and condensed with reduced pressure so that their volume reached 500 ml, which was equal to 0.5 g of the powder per milliliter. For further investigation, the extract was divided into equal volumes (25 ml) and stored at -20°C temperature.

2.4. Diabetes infusion

The rats were diabetic via IP Injection of STZ solution at a dosage of 60 mg/kg dissolved in buffer citrate 0.1 at pH=4.5. On the second day, blood samples were collected through a tail vein from animals under anesthesia with chloroform. Rats with fasting blood glucose higher than 250 mg/dl were considered diabetic and were used in the present study.

2.5. Blood sample

One day after the last gavage, blood samples were taken from all mice through a tail vein under chloroform anesthesia conditions once before receiving the medication (fasting) and once 1 hour after receiving the medication, and serum was extracted by centrifugation device for 15 minutes at a speed of 3000 rpm. Then, serum levels of blood glucose and liver enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alpha-glutamyl transpeptidase (GGT) were measured and recorded by standard kits of Pars Azmoon Company (Iran).

2.6. Statistical analysis

The obtained data were collected and recorded in Excel software. The statistical analysis was performed with SAS
version 19 using the mean comparison with Duncan’s multi-domain test with 95% confidence level (p < 0.05).26

3. Results

3.1. Fasting blood glucose levels

Blood glucose levels in all treatment groups were significantly lower than the diabetic control group (p < 0.05), but indicated a higher blood glucose level than the control group (p < 0.05, Table 1). The lowest blood glucose levels were observed in the omega-3 (244 mg/dl), Portulaca oleracea (253 mg/dl), and Vitamin E + Selenium (283 mg/dl) groups, respectively, although the difference was not significant (p > 0.05).

3.2. Blood glucose levels one hour after the last treatment

Blood glucose levels in all treatment groups were significantly lower than the diabetic control group (p < 0.05), but showed higher blood glucose levels than the control group. The results indicated a significant difference between the Portulaca oleracea and the control groups (p < 0.05, Table 1). The lowest blood glucose levels were observed among the treatment groups as 136, 146, and 163 mg/dl in Vitamin E + Selenium, omega-3, and Portulaca oleracea groups, respectively, although the difference between them was not significant (p > 0.05).

3.3. AST activity levels

The activity of AST enzyme in all treatment groups was significantly lower than the diabetic control group (p < 0.05), but still showed a higher difference in enzyme activity than the control group (p < 0.05, Table 2). The lowest AST enzyme activity was observed among the treatment groups as 136, 146, and 163 mg/dl in Vitamin E + Selenium, omega-3, and Portulaca oleracea groups, respectively, although the difference between them was not significant (p > 0.05).

3.4. ALT activity levels

ALT enzyme activity was significantly lower in the groups treated with Portulaca oleracea and Vitamin E + Selenium and also in the healthy control group than the diabetic control group and omega-3 consuming group (p < 0.05, Table 2). The lowest ALT enzyme activity was observed among the treated groups in the groups consuming Vitamin E + Selenium (83 U/L), Portulaca oleracea (85 U/L), and omega-3 (117 U/L), respectively. Portulaca oleracea and Vitamin E + Selenium showed enzymatic activity close to the healthy control group.

3.5. ALP activity levels

Alkaline phosphatase activity in all treated groups was significantly lower than in the diabetic control group, and the Vitamin E + Selenium group showed a significant decrease, compared to the omega-3 group (p < 0.05, Table 2). The lowest ALP enzyme activity was observed among the treatment groups in the groups consuming Vitamin E + Selenium (129 U/L), Portulaca oleracea (145 U/L), and omega-3 (184 U/L), respectively. Portulaca oleracea and Vitamin E + Selenium showed enzymatic activity close to the healthy control group.

3.6. GGT activity levels

GGT activity was significantly lower in all treatment groups than in diabetic and control groups (p < 0.05, Table 2). The lowest activity of the GGT enzyme among the treatment groups was observed in the groups of Portulaca oleracea (14 U/L), Vitamin E + Selenium (16 U/L), and omega-3 (21 U/L), respectively. However, this enzymatic activity did not show a significant difference among the groups (p > 0.05).

Table 1. Fasting blood glucose levels in control and treatment groups of diabetic rats on day 28

<table>
<thead>
<tr>
<th>Groups</th>
<th>Blood glucose</th>
<th>Control group</th>
<th>Portulaca oleracea group</th>
<th>Omega-3 group</th>
<th>Vitamin E + Selenium group</th>
<th>Diabetic control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting glucose</td>
<td>125a</td>
<td>253b</td>
<td>244b</td>
<td>283b</td>
<td>550b</td>
<td></td>
</tr>
<tr>
<td>One hour after</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Enzyme activity levels in control and treatment groups of diabetic rats on day 28

<table>
<thead>
<tr>
<th>Groups</th>
<th>Enzymes</th>
<th>Control group</th>
<th>Portulaca oleracea group</th>
<th>Omega-3 group</th>
<th>Vitamin E + Selenium group</th>
<th>Diabetic control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>79a</td>
<td>164b</td>
<td>236d</td>
<td>183c</td>
<td>294c</td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>72b</td>
<td>85c</td>
<td>117b</td>
<td>83c</td>
<td>122b</td>
<td></td>
</tr>
<tr>
<td>ALP</td>
<td>114a</td>
<td>145a</td>
<td>184c</td>
<td>129a</td>
<td>528a</td>
<td></td>
</tr>
<tr>
<td>GGT</td>
<td>30d</td>
<td>14e</td>
<td>21d</td>
<td>16e</td>
<td>29f</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

Portulaca oleracea extract contains active pharmacological agents, such as alkaloids, glycosides, terpenoids, sterols, and flavonoids. It may be stated that some of these compounds can reduce the severity of autoimmune reactions and the inflammation process to the extent that leads to the destruction of beta cells.
Consequently, the destruction of the remaining cells is prevented which provides ample opportunity for the proliferation of these cells and the regeneration of the pancreatic islets. It was found that the consumption of *Portulaca oleracea* extract caused the regeneration of pancreatic islets in diabetic rats with STZ due to the presence of flavonoids, such as quercetin, existing in the aerial parts of the plant, which can release insulin by changes in Ca++ metabolism. The results of a study addressing the effect of *Portulaca oleracea* extracts on alloxa-induced diabetic rats have indicated a significant decrease in the Hemoglobin A1C (Hb A1C), serum levels of glucose, Tumor Necrosis Factor-alpha (TNF-α), and Interleukin 6 (IL-6) of *Portulaca oleracea* pre-treated diabetic rats confirming that *Portulaca oleracea* is a general tissue-protective and regenerative agent and also demonstrated the anti-diabetic effect of the hydroethanolic extract of *Portulaca oleracea* seeds on diabetic animals. *Portulaca oleracea* modulates radical oxygen production, which may be responsible at least in part for the amelioration of hyperglycemia, inflammation, and oxidative stress. In an investigation by Dehghan et al., it was indicated that 16 weeks of aerobic training or/and *Portulaca oleracea* seed consumption were effective in the regulation of diabetic parameters and biomarkers associated with atherosclerosis in women with Type 2 Diabetes (T2D). Another relevant study revealed that diabetes significantly impaired brain abilities and swimming training, and *Portulaca oleracea* synergistically reversed and ameliorated neuropathological dysfunction in type 2 diabetic rats. *Portulaca oleracea* can keep blood glucose levels normal in three ways. Firstly, it reduces the transfer of glucose from the intestine to the bloodstream, secondly, increases cell access to glucose in the bloodstream; and finally, it modulates the sensitivity of cells to insulin.

Water, minerals, pectin, protein, carbohydrates, fatty acids, especially omega-3 unsaturated fatty acids, antioxidants, and numerous minerals (such as ferritin, copper, manganese, potassium, calcium, and cessation) are found in different parts of this plant. *Portulaca oleracea* is the richest plant source with omega-3 fatty acids. Its antioxidant compounds include Olefatoferol, Ascorbic acid, and Glutathione. In addition, the antioxidant properties of the plant extract have been confirmed in laboratory studies. In another study, it was found that aqueous and ethanolic extracts of *Portulaca oleracea* leaves can produce various antioxidants. Moreover, isoquinoline, as the main alkaloid of *Portulaca oleracea* has a significant stimulating effect on insulin secretion and improved glucose uptake. It should be noted that no significant toxic marks have yet been reported about *Portulaca oleracea*.

There are reports on the effectiveness of Selenium in diabetes as well as its significant role in reducing the effect of STZ, and enhancing the activity of GPx enzyme in rats. However, Selenium has a narrow therapeutic index, and the increase in consumption can have toxic effects.

Vitamin E is known as the most important anti-oxidant of biological membranes that can neutralize free radicals. Jamilian and Ravanbaksh reported that Vitamin E plus omega-3 fatty acid supplementation in gestational diabetes mellitus women had beneficial effects on biomarkers of inflammation and oxidative stress. Baburao Jain and Anand Jain have demonstrated that Vitamin E supplementation has an important role in delaying the onset of diabetic complications as well as slowing down the progression of the complications. Another meta-analysis indicated that the supplementation of Vitamin E might be a valuable strategy for controlling diabetes complications and enhancing antioxidant capacity.

The essential fatty acids are reported to have a low level in different tissues of diabetic patients. Adding omega-3 fatty acids to the diet of diabetic patients can improve omega-3 fatty acid deficiencies. The causes of low levels of essential fatty acids in diabetic patients are unclear, but some researchers assert that diabetics have less ability to convert linoleic acid into Eicosapentaenoic acid and Docosahexaenoic acid. In one of the latest studies on the antidiabetic effects of Vitamins C, A, and E as well as omega-3 fatty acids, it was found that lipid peroxidation and malondialdehyde levels were reduced due to the decreased production of free radicals or inhibition of oxidative damage.

In a study, it was found that when the activity of ALT enzyme increases, injecting Vitamin E with Selenium, its activity is significantly closer to normal. Contrary to the present results, another study indicated a significant increase in the activity of ALP enzyme as a result of Vitamin E + Selenium. Similar to the results of the present study, Sousou et al. indicated that *Portulaca oleracea* consumption could significantly increase the activity of liver enzymes (ALT, AST, and GGT) in rats with bile ducts closed, compared to rats with bile ducts. Closed but not treated with *Portulaca oleracea* significantly reduced in weeks 3 and 4 after the experiment. *Portulaca oleracea* extracts significantly increase serum total protein levels and decreases urea, uric acid, cholesterol, triglyceride LDL, and liver enzymes, including ALT and AST in diabetic rats. The conclusion of a study by Zarei et al. indicated that the extract of this plant could improve liver function due to the hypoglycemic and hypolipidemic antioxidant properties of *Portulaca oleracea* extract and its effect on reducing liver enzymes (ALT, ALP). In another study, Abdel et al. revealed that consumption of fish (a source of omega-3) significantly reduced the activity of AST and ALT enzymes in diabetic rats.

5. Conclusion

Given the high content of ALA fatty acids (more than 3 times more than spinach) in *Portulaca oleracea* and their durability, as well as the presence of a rich source of Vitamin E (approximately 7 times more than spinach) along with other vitamins, minerals, and beneficial minerals, as well as the results of the current study, it can be concluded that *Portulaca oleracea* can be used as a food to prevent diabetes and control blood glucose during
diabetes. Moreover, considering the effects of Portulaca oleracea and its compounds along with the combination of Vitamin E and Selenium on liver enzymes, it can be suggested that these two groups can strongly control the destructive effects of diabetes on the liver cell function and even their activity proceeds to normal.

Declarations

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

Daryoush Babazadeh designed the study and performed the sampling and practical procedures. Ali Shabestari Asl revised the draft of the manuscript, and checked the final version of the article. Aliireza Sadeghi performed the statistical analysis, Muhammad Saeed revised the draft of the manuscript and removed the language errors, and Arman Moshashiy wrote the draft of the manuscript. All authors check the final proof of the article and the statistical results.

Funding

The current study was funded by the Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Availability of data and materials

All data and related findings of the thesis are prepared for publishing in the present journal.

Acknowledgments

The authors would like to express their appreciation to the Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran for their collaboration, and support during all procedures of this experimental research.

References

23. Gao D, wang Li Q and Fan Y. Hypoglycemic effects and mechanisms of

