Phenotypic Resistance of Staphylococcus aureus to Antibiotics in Dogs of Tamale Metropolis, Ghana

Main Article Content

Frederick Adzitey
Nicholas Prah
Hafiz Salifu
David Yidana

Abstract

Introduction: Staphylococcus aureus is an important bacterium which induces a wide range of diseases. Its presence in dogs and resistance to antibiotics is a threat to public health due to the close association of humans with dogs. The aim of the present study was to determine the phenotypic resistance of Staphylococcus aureus (S. aureus) to antibiotics in dogs without any clinical manifestation of diseases in Tamale Metropolis, Ghana. The current study also examined microbial load in these dogs. Materials and methods: A total of 120 samples from various parts of dogs, including the mouth, nose, anus, inner ear, and outer ear, were examined. Isolation and antibiotic resistance of S. aureus were determined using the USA Bacteriological Analytical Manual and the Disc Diffusion method, respectively.


Results: The presence of S. aureus in the dogs ranged from 8.3% (anus) to 58.3% (nose), averaging 40%. The microbial load also ranged from 2.9 log cfu/cm2 (mouth) to 3.4 log cfu/cm2 (outer ear), with an average of 3.2 log cfu/cm2. There were significant differences among the examined samples regarding the presence of S. aureus, but not the microbial load. The overall resistance, intermediate resistance, and susceptibility of S. aureus were 46.2%, 12.9%, and 42.2%, respectively. The S. aureus was highly resistant to teicoplanin (88.0%) and susceptible to chloramphenicol (72.0%). The multiple antibiotic indexes ranged from 0 to 0.9, and 89.1% of the isolates exhibited multidrug resistance.


Conclusion: The findings of the current study revealed that healthy dogs in Tamale Metropolis, Ghana, were carriers of S. aureus as well as other bacteria, and S. aureus exhibited different resistance patterns to antibiotics.

Article Details

How to Cite
Adzitey, F., Prah, N., Salifu, H., & Yidana, D. (2022). Phenotypic Resistance of Staphylococcus aureus to Antibiotics in Dogs of Tamale Metropolis, Ghana. Small Animal Advances, 1(1), 16–21. https://doi.org/10.58803/saa.v1i1.4
Section
Original Articles

References

Gherardi G, Di Bonaventura G, and Savini V. Staphylococcal taxonomy. Pet-To-Man Travelling Staphylococci. 2018; pp. 1-10. DOI: https://www.doi.org/10.1016/B978-0-12-813547-1.00001-7

Taylor TA and Unakal CG. Staphylococcus aureus. StatPearls [Internet]. 2021; Available at: https://www.ncbi.nlm.nih.gov/books/NBK441868/

Sakr A, Brégeon F, Mège JL, Rolain JM, and Blin O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018; 9: 2419. DOI: https://www.doi.org/10.3389/fmicb.2018.02419

Hamid IM, Shuiep ES, El Zubeir IE, Saad AZ, and El Owni OA. Influence of Staphylococcus aureus mastitis on milk composition of different dairy breeds of cattle in Khartoum State, Sudan. Vet. World. 2012; 2(2): 13-16. Available at: https://wvj.science-line.com/attachments/article/13/World’ s%20Vet.%20J.%202(2)%2013-16,%202012.pdf

Algammal AM, Hetta HF, Elkelish A, Alkhalifah DH, Hozzein WN, Batiha GE, El Nahhas N, and Mabrok MA. Methicillin-resistant staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020; 13: 3255-3265. DOI: https://www.doi.org/10.2147/IDR.S272733

Farhab M, Aleem MT, Shaukat S, Qadry A, Haq MZ, Ullah F, Jawad M, and Aqib AI. Staphylococcus aureus and the veterinary medicine. Insights into drug resistance in staphylococcus aureus. 2021; 23: 223. DOI: https://www.doi.org/10.5772/intechopen.100202

Saeed MM, Yasir JOA, Hussein AN, and Hassan RM. Review of animal diseases caused by Staphylococci. Rev. Latinoam. de Hipertens. 2022; 17: 1-7. DOI: http://www.doi.org/10.5281/zenodo.6481584

Azuonwu O, Kemsi B, Njoku-Tony RF, and Wokem GN. Investigation of emerging risk factors and isolation of potential pathogenic bacteria from domestic dog stool in Port Harcourt Metropolis, Niger Delta. Int. J. Zool. Res. 2020; 1: 1-13. DOI: https://www.doi.org/10.14302/issn.2694-2275.jzr-20-3537

European food safety authority (EFSA). The European Union one health 2019 zoonoses report. EFSA Journal. 2021; 19: 1-286. Available at: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2021.6406

Suepaul S, Georges K, Unakal C, Boyen F, Sookhoo J, Ashraph K, Yusuf A, and Butaye P. Determination of the frequency, species distribution and antimicrobial resistance of Staphylococci isolated from dogs and their owners in Trinidad. PLoS ONE. 2021; 16(7): e0254048. DOI: https://www.doi.org/10.1371/journal.pone.0254048

Benz-Schwarzburg J, Monsó S, and Huber L. How dogs perceive humans and how humans should treat their pet dogs: Linking cognition with ethics. Front. Psychol. 2020; 11:1-7. DOI: https://www.doi.org/10.3389/fpsyg.2020.584037

Gómez-Beltrán DA, Villar D, López-Osorio S, Ferguson D, Monsalve LK, and Chaparro-Gutiérrez JJ. Prevalence of antimicrobial resistance in bacterial isolates from dogs and cats in a veterinary diagnostic laboratory in Colombia from 2016-2019. Vet. Sci. 2020; 7: 173. DOI: https://www.doi.org/10.3390/vetsci7040173

Wei L, Yang C, Shao W, Sun T, Wang J, Zhou Z, Chen C, Zhu A, and Pan Z. Prevalence and drug resistance of Salmonella in dogs and cats in Xuzhou, China. J. Vet. Res. 2020; 64: 263-268. DOI: https://www.doi.org/10.2478/jvetres-2020-0032

Watkins LK, Laughlin ME, Joseph LA, Chen JC, Nichols M, Basler C, Breazu R, Bennett C, Koski L, Montgomery MP, et al. Ongoing outbreak of extensively drug-resistant Campylobacter jejuni infections associated with US pet store puppies, 2016-2020. JAMA Netw. Open. 2021; 4: e2125203. DOI: https://www.doi.org/10.1001/jamanetworkopen.2021.25203

Ma GC, Worthing KA, Ward MP, and Norris JM. Commensal staphylococci including methicillin-resistant Staphylococcus aureus from dogs and cats in remote New South Wales, Australia. Microb. Ecol. 2020; 79: 164-174. DOI: https://www.doi.org/10.1007/s00248-019-01382-y

Rana EA, Islam MZ, Das T, Dutta A, Ahad A, Biswas PK, and Barua H. Prevalence of coagulase‐positive methicillin‐resistant Staphylococcus aureus and Staphylococcus pseudintermedius in dogs in

Bangladesh. Vet. Med. Sci. 2022; 8: 498-508. DOI: https://www.doi.org/10.1002/vms3.701

Silva V, Caniça M, Manageiro V, Vieira-Pinto M, Pereira JE, Maltez L, Poeta P, and Igrejas G. Antimicrobial resistance and molecular epidemiology of Staphylococcus aureus from hunters and hunting dogs. Pathogenes. 2022; 11: 548. DOI: https://www.doi.org/

3390/pathogens11050548

Ghana statistical service. 2010 Housing and polulation census: Northern regional analytical report. 2013. Available at: https://www2.statsghana.gov.gh/docfiles/2010phc/2010_PHC_Regional_Analytical_Reports_Northern_Region.pdf

Maturin L and Peeler JT. Bacteriological analytical manual (BAM) Chapter 3: Aerobic plate count. 2001. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count

Adzitey F, Assoah-Peprah P, Teye GA, Somboro AM, Kumalo HM, and Amoako DG. Prevalence and antimicrobial resistance of Escherichia coli isolated from various meat types in the Tamale Metropolis of Ghana. Int. J. Food Sci. 2020a; 2020: 8877196. DOI: https://www.doi.org/10.1155/2020/8877196

Tallent S, Hait J, Bennett RW, and Lancette GA. Bacteriological analytical manual (BAM): Staphylococcus aureus. chapter 12.

Available at: https://www.fda.gov/food/laboratory-methods-food/bam-staphylococcus-aureus

Adzitey F, Ekli R, and Aduah M. Incidence and antibiotic susceptibility of Staphylococcus aureus isolated from ready-to-eat meats in the environs of Bolgatanga Municipality of Ghana. Cogent Environ. Sci. 2020b; 6: 1791463. DOI: https://www.doi.org/10.1080/23311843.2020.1791463

Bauer AW. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966; 45(4): 493-496. Available at: https://asm.org/ASM/media/docs/105bauer.pdf

Clinical and laboratory standard institute. Document M31-A3. Performance standards for antimicrobial disk and dilu-tion susceptibility tests for bacteria isolated from animals: Approved standard, 3rd ed. Pennsylvania: Clinical and Laboratory Standards Institute; 2017. Available at: https://www.dbt.univr.it/documenti/ OccorrenzaIns/matdid/matdid485539.pdf

Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. AEM. 1983; 46: 165-170. DOI: https://www.doi.org/ 10.1128/aem.46.1.165-170.1983

Cinquepalmi V, Monno R, Fumarola L, Ventrella G, Calia C, Greco MF, De Vito D, and Soleo L. Environmental contamination by dog’s faeces: A public health problem? IJERPH. 2013; 10: 72-84. DOI: https://doi.org/10.3390/ijerph10010072

Ruparell A, Inui T, Staunton R, Wallis C, Deusch O, and Holcombe LJ. The canine oral microbiome: Variation in bacterial populations across different niches. BMC Microbiol. 2020; 20: 1-13. DOI: https://www.doi.org/10.1186/s12866-020-1704-3

Morelli G, Catellani P, Miotti Scapin R, Bastianello S, Conficoni D, Contiero B, and Ricci R. Evaluation of microbial contamination and effects of storage in raw meat‐based dog foods purchased online. J.Anim. Physiol. Anim. Nutr. 2020; 104: 690-697. DOI: https://www.doi.org/10.1111/jpn.13263

Sleiniute J and Siugzdaite J. Distribution of coagulase-positive Staphylococci in humans and dogs. Acta Vet. Brno. 2015; 84: 313-320. DOI: https://www.doi.org/10.2754/avb201584040313

Lorian V. Antibiotics in Laboratory Medicine. 5th Ed. Philadelphia: Lippincott Williams and Wilkins; 2005. Available at: https://lib.ugent.be/catalog/rug01:001040322

Adzitey F. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry: A mini review. Vet. World. 2015; 5(3): 36-41. DOI: https://www.doi.org/10.5455/wvj.20150853

Adzitey F, Rusul G and Huda N. Prevalence and antibiotic resistance of Salmonella serovars in ducks, duck rearing and processing environments in Penang, Malaysia. Int. Food Res. J. 2012; 45(2): 947-952. DOI: https://www.doi.org/10.1016/j.foodres.2011.02.051

Naziri Z, Poormaleknia M, and Ghaedi Oliyaei A. Risk of sharing resistant bacteria and/or resistance elements between dogs

and their owners. BMC Vet. Res. 2022; 18: 203. DOI: https://www.doi.org/10.1186/s12917-022-03298-1

Uwaezuoke JC and Aririatu LE A. survey of antibiotic resistant Staphylococcus aureus strains from clinical sources in Owerri. J.

Appl. SCI. Environ. Manag. 2004; 8(1): 67-69. DOI: https://www.doi.org/10.4314/jasem.v8i1.17230

Rotchell D and Paul D. Multiple antibiotic resistance index. Fitness and virulence potential in respiratory Pseudomonas aeruginosa

from Jamaica. J. Med. Microbiol. 2016; 65(4): 251-271. DOI: https://www.doi.org/10.1099/jmm.0.000229